Mathematical Modeling of Longitudinal Compressive Failure in Fiber
Reinforced Composites as Shear Banding DUE to Strain Localization

Takeaki Nadabe
Department of Advanced Energy, Graduate School of Frontier Sciences,
the University of Tokyo, Kashiwa, Chiba, Japan
E-mail: nadabe@smart.k.u-tokyo.ac.jp

Abstract—This study investigates the mathematical modeling of longitudinal compressive failure in fiber reinforced composites as shear
banding due to strain localization. Firstly the numerical simulation of longitudinal compressive failure is conducted. The simulated results show that
at one moment of the loading, the localized deformation catastrophically appears in the material, and in this initiation of the localized deformation,
the reduction of tangent shear stiffness plays an important role. Then a set of mathematical equations is obtained for the deformation of composite
materials, and the mathematical solution of the equations is considered. There exists a state where arbitrariness appears in the solution of equations
expressing deformation of composite materials, and it is indicated that the onset of arbitrariness in solution of equations expressing deformation of
composite materials is closely related with the initiation of longitudinal compressive failure, and also related with the initiation of narrow localized

band in the materials.
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INTRODUCTION

Composite materials commonly have complex internal
structures including fibers, matrix, interfaces and
interlaminar regions, and when precise evaluation of
fracture strength of the material is conducted, the internal
fracture process in the materials is necessary to be taken
into account in the numerical analysis. In recent years,
composite materials are being increasingly used in
several industrial fields, and the precise evaluation of
mechanical response of the material under various
loading condition and environmental condition increases
the necessity in design and improvement of industrial
products [1-3]. Compressive failure is one of the typical
failure modes in fiber reinforced composite materials, and
fracture strength in compressive failure often becomes
one of the limiting factors at the design phase of
structural elements [2—3]. This study investigates the
mathematical modeling of longitudinal compressive
failure in fiber reinforced composite materials. The
purpose of this study is to establish the numerical
analysis method to predict the mechanical response of
composite materials which changes under different
loading condition and environmental condition.

NUMERICAL SIMULATION OF LONGITUDI-NAL
COMPRESSIVE FAILURE

Numerical Model

Firstly the numerical simulation of longitudinal
compressive failure is conducted. Finite element method
is used to simulate the longitudinal compressive failure.
Fig. 1 shows the numerical model of this analysis. The
white and gray elements in Fig. 1 represent fibers and
matrix, respectively. Each fiber and matrix is modeled by
two-dimensional plate elements. The elements have eight
nodes and four integration points in order to avoid the
shear locking and zero-energy mode deformation

particularly in plas-tic deformation. The one fiber placed
at the center has the initial misalignment as shown in
Fig. 1. In this analysis, carbon fiber/ epoxy resin
AS4/3501-6 is assumed as the material, and the material
property values shown in Ref. [5] are applied.
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Fig. 1: Numerical Model of Composite Material
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Fig. 2: Simulated Results of Deformation
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Simulated Results and Discussion

Figure 2 shows the simulated results of deformation of
the material. Simulated results show that in the initial
state of the loading, the stress concentration occurs in the
material around the initial misalignment of fiber, and
when the applied load is increased, local areas of matrix
around the stress concentration start to yield, and
deformation is locally increased. At one moment of the
loading, a large deformation occurs within a narrow band,
and a band of localized deformation develops rapidly.
This band of localized deformation passes across the
misalignment part of center fiber. As shown in Fig. 2,
fibers cause bending deformation, and fiber direction is
largely rotated. Matrix causes shear deformation, and the
shape of the elements is close to thombus shape which is
rectangle shape in initial state. After the yielding of
matrix, the elastic-plastic tangent shear stiffness of matrix
significantly reduces, and the shear strain rapidly
increases. Then the shear deformation of this part of
matrix increases, and due to the shear deformation of the
part, the band of localized deformation is formed. The
reduction of shear stiffness of matrix is the essential
factor in the initiation of the localized deformation of the
material.

MATHEMATICAL MODELING OF LONGITUDI-NAL
COMPRESSIVE FAILURE

Equations Expressing Deformation of
Composite Materials

Here, the equations expressing deformation of composite
materials are compiled. The equations consist of motion
equation and constitutive equation. The motion equation
is represented as the following:

azu. aE/
~=—+p,f; 1
Po o an Pof; (1

where p, is density, ¢ is time, u, is displacement,
X is coordinate at reference configuration, £, is the
first Piola-Kirchhoff stress and £, is external force. The

nonlinear stress-strain relation of composite materials is
represented by the nonlinear deformation theory shown
by Tohgo et al. [6].
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where do 1is stress rate, dg is strain rate, C C ;
and C, are constitutive tensors of composites, fibers and

comp

matrix, respectively, V, is fiber volume fraction and §

is Eshelby tensor. In order to apply the stress-strain
relation in Eq. (2) in numerical analysis, evaluation of
equivalent stress of matrix is necessary. The following
relation is applied to evaluate the equivalent stress of
matrix from the applied stress in composite materials:

da, =C,(S-1)K'{C, +(C, -C,)s(s-1)'C, 'ds  (3)

where do,, is stress rate of matrix and 7is unit

tensor. Then the effect of geometrical nonlinearity during
the material deformation is considered. Here the
constitutive tensor in spacial description is defined in the
relation between the second Piola-Kirchhoff stress and
the right Cauchy-Green deformation tensor:
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where C7? is constitutive tensor in spacial

description, S, is the second Piola-Kirchhoff stress and

CS is the right Cauchy-Green deformation tensor.

The constitutive tensor in material description is

represented by the constitutive tensor in spacial
description as follows:
Cpt = 2J7 F, F F FyCy
1 ox. Ox, .
1 Ox; OX; Ox, Ox e 5)

Jox, ox, ox, ox,

where Cj' is constitutive tensor in material
description, F,, is deformation gradient, J=detF) is
Jacobian and x, is coordinate at present configuration.

Cauchy stress is represented by the second
Piola-Kirchhoff stress, deformation gradient and Jacobian
as follows:

o,=J"'F,S,F (6)

ij kil ji

dg/ = J_IF;'kSlefl + J_IF;'kSle

jl
+ J_IF;'kSlefl _JJ_IF;'kSkzFﬂ (7)

where o is Cauchy stress and o, is the material

time derivative of Cauchy stress. Here, the time
derivative of deformation gradient and Jacobian is:

Fy =Ly Fy, j:Lii ®)

i

where L, is velocity gradient. Then

G, = JL,F SuFy +J—1F;'ksk1Ffl

im”™ mk
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Where:
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Therefore:
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This coincides with the formulation of Truesdell rate
of Cauchy stress. Therefore, here the formulation of finite
deformation is based on Truesdell rate of Cauchy stress.
Then the rate of the first Piola-Kirchhoff stress is
represented as follows:

.o,
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where o, is Kronecker delta. From Egs. (1) and

(13), a set of equations expressing deformation of
composite materials is obtained:
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Arbitrariness Appearing in Solution of
Equ-ations in Deformation of Composite
Materials

Equations (14) and (15) are unified to one differential
equation:

o, . 0 ou
Z = | 4. —k 16
Po o Pofi ox, ( ikl o, J (16)
where tensor 4, is
oX,
Ay =J gj(cimktl + U/m5ik) (17)

m

Equation (16) plays a role of governing equation in
the deformation of composite materials. When the
reference configuration is taken at the moment of the
present time, and in the place where the external force
doesn’t act, Eq. (16) becomes as follows:

2. .
pat =i(A a”kj (18)
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where p is density at the present time. Here, we

conduct the transformation of coordinate system for this
equation. Firstly each variable is transformed as the
following in the transformation of coordinate system.
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where x/ is the coordinate system after the

transformation. Then Eq. (18) is transformed as follows:

' o ., o
P = (Aabud /L J (20)
Ox

2 !
ot Ox,, Y

Commonly the governing equations for natural
phenomena do not change their form in the coordinate
transformation. Then, when the deformation is locally
independent to 2” and 3 directions, 9/dx} and 6/dx; are
equal to zero, and when the deformation is quasi-static,
0/ ot becomes equal to zero, which corresponds with the
case when inertia term is infinitesimal, then Eq. (20)
becomes as follows:

ﬂ(A' a—d:‘J:O (1)

1cl
ox| |7 oxf

’
alcel

Here, the eigenvalue problem of the tensor A’ , is

considered. Using the eigenvalue A’ and the eigenvector
v,of the tensor A, the eigenvalue problem is

represented as:
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When the tensor A4’

alcl

has zero eigenvalues, Eq. (22)
becomes as follows:

A, V=0 (23)
Multiplying the arbitrary function q}'(xl' ):

A vig(x)=0 (24)

Then taking the partial differenciation of x; :

! ! a ! !
AV, = ¢'(x])=0 (25)
Ox,

This equation means that 2/ =v'¢'(x/) is one of the
solution of Eq. (21). Since #’ =v'¢'(x!) is the solution of
Eq. (21) for arbitrary function ¢'(xl'), Eq. (21) have
multiple solutions, or the arbitrariness appears in the
solution of Eq. (21). This case causes when the tensor
A . has zero eigenvalues. When the tensor A4’ . has

zero eigenvalues, the determinant of 4

’

’
alcl alcl

'
alcl

becomes zero:
det(4.,,,)=0 (26)

From Eq. (19), the tensor A’

alcl

is represented by the

original coordinate system of tensor A4, :

g =4 0% Ox O Ox

| e 27
alel ikl ox, axj Ox, 0x, .

Here, we introduce two tensors n; and J, which

express the coordinate transformation:
_ox J ox!

. " 28

i

Then Eq. (26) becomes as follows:

det(A",lL,l):det(AUklnjnlJ J _1)

ai¥ ck
= det(d 1, )- det(s,,)-det(s, )= 0 (29)
Since det(J,,)#0:
det(4,n,m,)=0 (30)

When we put the tensor Aynn as a,, the
determinant of Eq. (30) is explicitly represented in two-

dimensional as the following:

detay =a,ay, —a,a, =0 (31

In fiber reinforced composite materials, commonly
the elastic modulus in fiber axial direction has much
higher value than the value of transverse direction and

stress value, and because of this, C|}];has much higher
value than the other components of constitutive tensor

Cp and the components of stress tensor o, that is

ij ]
mat mat mat mat .
Chn >>Cyi s 0y (CW ;tCHH). Since only 4,,,, and
: mat
a,, includes C|\7\, A, >> AW (AW * A”,,) and
a, >>a, (a, #a,). Thus the equation becomes,
a,a
ay, =221 5 (32)
ay
Here the vector n;, is represented using an angle 8 as
follows:

’

n, :%:(cosﬁ sinﬁ) (33)
Ox

J

Then a,, is represented as follows:

ay = A2j21njnl

= Cz’"]f’z’lnjnl +o,nn

= (C;‘;tl +0y, )0052 B+ (C;‘;tz + Czngl + 20—12)

cos fsin f+(CL + 0, Jsin® B~ 0 (34)
From this equation:

—Oo = Czngl + (Czngtz +0, )tan2 B

+(c + ez 20, )tan B (35)

—o,, is the value of applied compressive stress to
the material in longitudinal direction. When this applied
stress reaches the value of right hand side of Eq. (35), the
determinant of Eq. (30) becomes equal to zero, and the
arbitrariness is allowed to appear, which means the
instability appears in the material and microbuckling is
able to occur in the actual situations. The value of —o,
at the time of being equal to right hand side of Eq. (35) is
considered as the critical compressive stress o, or the

buckling stress in microbuckling:
mat mat 2
o, ~Cyy + (C2222 +0,, )tan B
(e + ez + 20, Jtan B (36)

Using elastic-plastic tangent shear modulus G/,

transverse tangent modulus E;”, in-plane Poisson’s ratio
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v,, and v, and shear stress 7,,, the equation becomes
as follows:

f 1
O-C)' ~ GLI;‘ + (—

Ef +622]tan2 B
1=v,v,,

+(cpe + e+ 20, Jtan B 37)

In the case of uniaxial compression and if C}}5, and

Chy are close to zero, the compressive strength is
approximately represented as follows,

;E;" tan’

~ (3P
o, ~=Gh + "
—Vi2Va

(38)

Equation (38) corresponds with the expression for
longitudinal compressive strength of composite materials
shown in Ref. [7]. It is indicated that the arbitrariness
condition in equations of deformation of composite
materials is closely related with the initiation condition of
compressive failure in composite materials.

Moreover, the critical stress value is also represented
by the constituent properties of fibers and matrix. From

Eq. (2):
(-1 WG - G2)51r + G276,
(1 -V XG;LT -GY )SLT +G?

{(1 B V./’ )SLT + V_f’ }G;LT + (1 B V/‘ Xl .

e (e .
GLT ~Gm

~GYr. - - (39)
(1- Vy )SLTG_/LT +i-(1- V.f’)SLT G
where G is the elastic-plastic tangent shear

modulus of matrix, Gy, is the elastic in-plane shear
modulus of fiber and S,, is the shear component of
Eshelby tensor. When the shear modulus of fiber is much
higher than the shear modulus of matrix Gy, >> G, :

o o g NV IS 4V, 4G
LT ! (l - Vf )SLTG_;LT

v
7 -l
—
l—V/ LT J

The Eshelby tensor depends on the geometrical

(40)

zG;p-(l+

shape of reinforcement fibers. Here, two kinds of fibers
shown in Fig. 3 are assumed. The case 1 in Fig. 3 is the
case where fibers and matrix have plate shape, and the
case 2 in Fig. 3 is the case where fibers are cylinder
solids and matrix surrounds fibers. In case 1, the value of
Eshelby tensor in shear componentis S,, =1. Then:

V., cp
G ~GP | 1+—L— |= G (41)
1=V, 1=V
G?
o, 42)
1=V
Fiber  Matrix
Case | Case 2
Fig. 3: Two Cases of Composite Material
On the other hand, in case 2, S, =1/2 . Then:
ZV/» 1+ Vf»
G =~Gr |1+ : =——=G7 (43)
1- V/» 1- V/,
1+V,
o,x——G (44)
1-V

s

In addition, the elastic-plastic tangent shear modulus
of matrix is closely related with the current yield state of
matrix. From Eq. (3):

SLTG(;LT + (1 -Sir )G;p

" {Vf *(I*V.flgLT}G;LT*(I*V/"XI*SLT)G;’]

where dr,, is shear stress rate of matrix and dz,,

dr

dT] 2, comp (45)

is applied shear stress rate of composite materials. When
the shear modulus of fiber is much higher than the shear

modulus of matrix Gy, >>G,’:

S LTG;LT
dr, = . —dTyy om
{Vf + (1 -V )SLT }G_/LT e
= ; T (46)
1— V/» + V/»SLT_I 12, comp
At ey ~ 1=V, +V,8,, 7 i, 47)

Then considering the integration until the time when
the significant degradation of tangent modulus occurs:

T ™ (1 Vit V/'SLT_I )fmy

where 7, is applied shear stress to composite

(48)

materials and 7, is yield stress of matrix. Generally the

fibers have a slight misalignment, and this misalignment
affects the local stress distribution of the material.

20
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Considering the equilibrium condition of applied stress in
between misalignment coordinate system and coordinate
system associated with global fiber direction:

O-xx¢+7:xy :7,']2 (49)
-1
Gcr _ T _Tx}’ ~ (1 - V/ + V/»SLT )[my _Txy (50)
4 ¢
where ¢ and 7, are stress in longitudinal direction

and shear stress in the coordinate system associated with
is the
misalignment angle of fiber. From this equation, the

global fiber direction, respectively and ¢
relationship of compressive strength with matrix yield
stress, applied shear stress, and fiber volume fraction are
represented as the linear relation, and the relationship
with misalignment of fiber is represented as inversely
proportional. In addition, the dependency of compressive
strength for the fiber volume fraction V, is related with
the shear component of Eshelby tensor §,,. When fibers
are plates, S,, =1 and

o = "m 51)

When fibers are cylinder solids, S,, =1/2 and

o - (l + Vf )TmY -7, (52)

¢

Numerical Analysis of Material Strength using
Arbitrariness Condition

Here the numerical analysis is conducted for the actual
material property using the condition in Eq. (30).
As the material, carbon fiber/ epoxy resin AS4/3501-6 [5]
is assumed. For stress-strain curve of matrix, two kinds of
curves M and N shown in Fig. 4 are applied and the
results are compared. Fig. 5 (a) shows the analysis results
for relationship between compressive strength and the
stresses. The shear stress reduces the

compressive strength and this relation is approximately

multi-axial

represented as the linear relation. Tensile and high
reduce the
compressive strength, while under the small compressive

compressive  transverse  stress  also
transverse stress, the compressive strength is almost
constant. In addition, the dependency of the multi-axial
stresses changes with the change of the stress-strain curve

of matrix. Fig. 5 (b) shows the analysis results for the

relationship between compressive strength and the
constituent material property. The matrix yield stress and
fiber volume fraction increase the compressive strength
and these relations are also close to the linear relation.
The initial fiber misalignment reduces the compressive
strength and this relation is close to the inversely
proportional relation. The dependency of the material
strength  for almost

each parameter agrees with

the experimental results shown in the previous

investigations [2-3].

CONCLUSION

Mathematical model expressing longitudinal compressive
failure is obtained. There exists a state where the
arbitrariness appears in the solution of equations
expressing the deformation of composite materials, and
the condition for onset of the arbitrariness is closely
related with the initiation of the longitudinal compressive
failure in the material.
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