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Abstract—This study investigates the mathematical modeling of longitudinal compressive failure in fiber reinforced composites as shear 
banding due to strain localization. Firstly the numerical simulation of longitudinal compressive failure is conducted. The simulated results show that 
at one moment of the loading, the localized deformation catastrophically appears in the material, and in this initiation of the localized deformation, 
the reduction of tangent shear stiffness plays an important role. Then a set of mathematical equations is obtained for the deformation of composite 
materials, and the mathematical solution of the equations is considered. There exists a state where arbitrariness appears in the solution of equations 
expressing deformation of composite materials, and it is indicated that the onset of arbitrariness in solution of equations expressing deformation of 
composite materials is closely related with the initiation of longitudinal compressive failure, and also related with the initiation of narrow localized 
band in the materials. 
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INTRODUCTION 
Composite materials commonly have complex internal 
structures including fibers, matrix, interfaces and 
interlaminar regions, and when precise evaluation of 
fracture strength of the material is conducted, the internal 
fracture process in the materials is necessary to be taken 
into account in the numerical analysis. In recent years, 
composite materials are being increasingly used in 
several industrial fields, and the precise evaluation of 
mechanical response of the material under various 
loading condition and environmental condition increases 
the necessity in design and improvement of industrial 
products [1–3]. Compressive failure is one of the typical 
failure modes in fiber reinforced composite materials, and 
fracture strength in compressive failure often becomes 
one of the limiting factors at the design phase of 
structural elements [2–3]. This study investigates the 
mathematical modeling of longitudinal compressive 
failure in fiber reinforced composite materials. The 
purpose of this study is to establish the numerical 
analysis method to predict the mechanical response of 
composite materials which changes under different 
loading condition and environmental condition. 

NUMERICAL SIMULATION OF LONGITUDI-NAL 
COMPRESSIVE FAILURE 

Numerical Model 

Firstly the numerical simulation of longitudinal 
compressive failure is conducted. Finite element method 
is used to simulate the longitudinal compressive failure. 
Fig. 1 shows the numerical model of this analysis. The 
white and gray elements in Fig. 1 represent fibers and 
matrix, respectively. Each fiber and matrix is modeled by 
two-dimensional plate elements. The elements have eight 
nodes and four integration points in order to avoid the 
shear locking and zero-energy mode deformation 

particularly in plas-tic deformation. The one fiber placed 
at the center has the initial misalignment as shown in  
Fig. 1. In this analysis, carbon fiber/ epoxy resin 
AS4/3501-6 is assumed as the material, and the material 
property values shown in Ref. [5] are applied. 

 

Fig. 1: Numerical Model of Composite Material 

 

Fig. 2: Simulated Results of Deformation 
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Simulated Results and Discussion 

Figure 2 shows the simulated results of deformation of 
the material. Simulated results show that in the initial 
state of the loading, the stress concentration occurs in the 
material around the initial misalignment of fiber, and 
when the applied load is increased, local areas of matrix 
around the stress concentration start to yield, and 
deformation is locally increased. At one moment of the 
loading, a large deformation occurs within a narrow band, 
and a band of localized deformation develops rapidly. 
This band of localized deformation passes across the 
misalignment part of center fiber. As shown in Fig. 2, 
fibers cause bending deformation, and fiber direction is 
largely rotated. Matrix causes shear deformation, and the 
shape of the elements is close to rhombus shape which is 
rectangle shape in initial state. After the yielding of 
matrix, the elastic-plastic tangent shear stiffness of matrix 
significantly reduces, and the shear strain rapidly 
increases. Then the shear deformation of this part of 
matrix increases, and due to the shear deformation of the 
part, the band of localized deformation is formed. The 
reduction of shear stiffness of matrix is the essential 
factor in the initiation of the localized deformation of the 
material. 

MATHEMATICAL MODELING OF LONGITUDI-NAL 
COMPRESSIVE FAILURE 

Equations Expressing Deformation of  
Composite Materials 

Here, the equations expressing deformation of composite 
materials are compiled. The equations consist of motion 
equation and constitutive equation. The motion equation 
is represented as the following: 
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where 0  is density, t  is time, iu  is displacement, 

jX  is coordinate at reference configuration, ijP  is the 
first Piola-Kirchhoff stress and if  is external force. The 
nonlinear stress-strain relation of composite materials is 
represented by the nonlinear deformation theory shown 
by Tohgo et al. [6]. 

C dd comp   

KCSCCCC 11 mmffmcomp V  (2) 

ffmmff VV CCSCCK 1   

where d  is stress rate, d  is strain rate, compC , fC  
and mC  are constitutive tensors of composites, fibers and 

matrix, respectively, fV  is fiber volume fraction and S  
is Eshelby tensor. In order to apply the stress-strain 
relation in Eq. (2) in numerical analysis, evaluation of 
equivalent stress of matrix is necessary. The following 
relation is applied to evaluate the equivalent stress of 
matrix from the applied stress in composite materials: 

CISSCCCKISC 1 dd mmfmmm
11  (3) 

where md  is stress rate of matrix and I is unit 
tensor. Then the effect of geometrical nonlinearity during 
the material deformation is considered. Here the 
constitutive tensor in spacial description is defined in the 
relation between the second Piola-Kirchhoff stress and 
the right Cauchy-Green deformation tensor: 
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where spa
abcdC  is constitutive tensor in spacial 

description, abS  is the second Piola-Kirchhoff stress and 
CG
cdC  is the right Cauchy-Green deformation tensor.  

The constitutive tensor in material description is 
represented by the constitutive tensor in spacial 
description as follows: 
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where mat
ijklC  is constitutive tensor in material 

description, iaF  is deformation gradient, ijFJ det  is 
Jacobian and ix  is coordinate at present configuration. 
Cauchy stress is represented by the second  
Piola-Kirchhoff stress, deformation gradient and Jacobian 
as follows: 

jlklikij FSFJ 1  (6) 

jlklikjlklikij FSFJFSFJ 11  

jlklikjlklik FSFJJFSFJ 11  (7) 

where ij  is Cauchy stress and ij  is the material 
time derivative of Cauchy stress. Here, the time 
derivative of deformation gradient and Jacobian is:  

kjikij FLF , iiLJ  (8) 

where ikL  is velocity gradient. Then 

jlklikjlklmkimij FSFJFSFLJ 11  
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jlklikmmjmmlklik FSFLJLFSFJ 11  
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Where: 
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Therefore: 

 llijjkikkjikkl
mat
ijklij LLLDC  (12) 

This coincides with the formulation of Truesdell rate 
of Cauchy stress. Therefore, here the formulation of finite 
deformation is based on Truesdell rate of Cauchy stress. 
Then the rate of the first Piola-Kirchhoff stress is 
represented as follows: 
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where ik  is Kronecker delta. From Eqs. (1) and 
(13), a set of equations expressing deformation of 
composite materials is obtained:  
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Arbitrariness Appearing in Solution of  
Equ-ations in Deformation of Composite 
Materials 

Equations (14) and (15) are unified to one differential 
equation: 

l

k
ijkl

j
i

i

x
uA

X
f

t
u

02

2

0  (16) 

where tensor ijklA  is 
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Equation (16) plays a role of governing equation in 
the deformation of composite materials. When the 
reference configuration is taken at the moment of the 
present time, and in the place where the external force 
doesn’t act, Eq. (16) becomes as follows: 
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where  is density at the present time. Here, we 
conduct the transformation of coordinate system for this 
equation. Firstly each variable is transformed as the 
following in the transformation of coordinate system. 
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where ax  is the coordinate system after the 
transformation. Then Eq. (18) is transformed as follows: 
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Commonly the governing equations for natural 
phenomena do not change their form in the coordinate 
transformation. Then, when the deformation is locally 
independent to 2’ and 3’ directions, 2x and 3x  are 
equal to zero, and when the deformation is quasi-static, 

t becomes equal to zero, which corresponds with the 
case when inertia term is infinitesimal, then Eq. (20) 
becomes as follows: 
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Here, the eigenvalue problem of the tensor 11caA  is 
considered. Using the eigenvalue  and the eigenvector 

cv of the tensor 11caA , the eigenvalue problem is 
represented as: 
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ccca vvA 11  (22) 

When the tensor 11caA  has zero eigenvalues, Eq. (22) 
becomes as follows: 

011 cca vA  (23) 

Multiplying the arbitrary function 1x : 

0111 xvA cca  (24) 

Then taking the partial differenciation of 1x : 
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1

11 x
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vA cca  (25) 

This equation means that 1xvu cc  is one of the 
solution of Eq. (21). Since 1xvu cc  is the solution of 
Eq. (21) for arbitrary function 1x , Eq. (21) have 
multiple solutions, or the arbitrariness appears in the 
solution of Eq. (21). This case causes when the tensor 

11caA  has zero eigenvalues. When the tensor 11caA  has 
zero eigenvalues, the determinant of 11caA  becomes zero: 

0det 11caA  (26) 

From Eq. (19), the tensor 11caA  is represented by the 
original coordinate system of tensor ijklA : 
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Here, we introduce two tensors jn  and aiJ  which 
express the coordinate transformation: 
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Then Eq. (26) becomes as follows: 
1

11 detdet ckailjijklca JJnnAA  

0detdetdet 1
ckailjijkl JJnnA  (29) 

Since 0det aiJ : 

0det ljijkl nnA  (30) 

When we put the tensor ljijkl nnA  as ika , the 
determinant of Eq. (30) is explicitly represented in two- 

dimensional as the following: 

0det 21122211 aaaaaik  (31) 

In fiber reinforced composite materials, commonly 
the elastic modulus in fiber axial direction has much 
higher value than the value of transverse direction and 
stress value, and because of this, matC1111 has much higher 
value than the other components of constitutive tensor 

mat
ijklC and the components of stress tensor ij , that is 

ij
mat
ijkl

mat CC ,1111  matmat
ijkl CC 1111 . Since only 1111A  and 

11a  includes matC1111 , ijklAA1111  1111AAijkl  and 

ikaa11  11aaik . Thus the equation becomes, 
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Here the vector jn is represented using an angle  as 
follows: 
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Then 22a is represented as follows: 
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From this equation: 
2

222222212111 tanmatmat CC  

tan2 1222212122
matmat CC  (35) 

11  is the value of applied compressive stress to 
the material in longitudinal direction. When this applied 
stress reaches the value of right hand side of Eq. (35), the 
determinant of Eq. (30) becomes equal to zero, and the 
arbitrariness is allowed to appear, which means the 
instability appears in the material and microbuckling is 
able to occur in the actual situations. The value of 11  
at the time of being equal to right hand side of Eq. (35) is 
considered as the critical compressive stress cr  or the 
buckling stress in microbuckling: 

2
2222222121 tanmatmat

cr CC  

tan2 1222212122
matmat CC  (36) 

Using elastic-plastic tangent shear modulus ep
LTG , 

transverse tangent modulus ep
TE , in-plane Poisson’s ratio 
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12  and 21  and shear stress 12 , the equation becomes 
as follows: 

2
22
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matmat CC  (37) 

In the case of uniaxial compression and if matC2122  and 
matC2221  are close to zero, the compressive strength is 

approximately represented as follows, 
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Equation (38) corresponds with the expression for 
longitudinal compressive strength of composite materials 
shown in Ref. [7]. It is indicated that the arbitrariness 
condition in equations of deformation of composite 
materials is closely related with the initiation condition of 
compressive failure in composite materials.  

Moreover, the critical stress value is also represented 
by the constituent properties of fibers and matrix. From 
Eq. (2): 
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where ep
mG  is the elastic-plastic tangent shear 

modulus of matrix, e
fLTG  is the elastic in-plane shear 

modulus of fiber and LTS  is the shear component of 
Eshelby tensor. When the shear modulus of fiber is much 
higher than the shear modulus of matrix ep

m
e
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The Eshelby tensor depends on the geometrical 
shape of reinforcement fibers. Here, two kinds of fibers 
shown in Fig. 3 are assumed. The case 1 in Fig. 3 is the 
case where fibers and matrix have plate shape, and the 
case 2 in Fig. 3 is the case where fibers are cylinder 
solids and matrix surrounds fibers. In case 1, the value of 
Eshelby tensor in shear component is 1LTS . Then: 
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Fig. 3: Two Cases of Composite Material 

On the other hand, in case 2, 21LTS . Then: 
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In addition, the elastic-plastic tangent shear modulus 
of matrix is closely related with the current yield state of 
matrix. From Eq. (3): 
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where md  is shear stress rate of matrix and compd ,12  
is applied shear stress rate of composite materials. When 
the shear modulus of fiber is much higher than the shear 
modulus of matrix ep

m
e
fLT GG : 

compe
fLTLTff

e
fLTLT

m d
GSVV

GS
d ,121

 

comp
LTff

d
SVV ,1211

1  (46) 

mLTffcomp dSVVd 1
,12 1  (47) 

Then considering the integration until the time when 
the significant degradation of tangent modulus occurs: 

mYLTff SVV 1
12 1  (48) 

where 12  is applied shear stress to composite 
materials and mY  is yield stress of matrix. Generally the 
fibers have a slight misalignment, and this misalignment 
affects the local stress distribution of the material. 
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Considering the equilibrium condition of applied stress in 
between misalignment coordinate system and coordinate 
system associated with global fiber direction: 

12xyxx  (49) 

xymYLTffxy
cr

SVV 1
12 1

 (50) 

where xx  and xy are stress in longitudinal direction 
and shear stress in the coordinate system associated with 
global fiber direction, respectively and  is the 
misalignment angle of fiber. From this equation, the 
relationship of compressive strength with matrix yield 
stress, applied shear stress, and fiber volume fraction are 
represented as the linear relation, and the relationship 
with misalignment of fiber is represented as inversely 
proportional. In addition, the dependency of compressive 
strength for the fiber volume fraction fV  is related with 
the shear component of Eshelby tensor LTS . When fibers 
are plates, 1LTS  and 

xymY
cr  (51) 

When fibers are cylinder solids, 21LTS  and 

xymYf
cr

V1
 (52) 

Numerical Analysis of Material Strength using 
Arbitrariness Condition 

Here the numerical analysis is conducted for the actual 
material property using the condition in Eq. (30).  
As the material, carbon fiber/ epoxy resin AS4/3501-6 [5] 
is assumed. For stress-strain curve of matrix, two kinds of 
curves M and N shown in Fig. 4 are applied and the 
results are compared. Fig. 5 (a) shows the analysis results 
for relationship between compressive strength and the 
multi-axial stresses. The shear stress reduces the 
compressive strength and this relation is approximately 
represented as the linear relation. Tensile and high 
compressive transverse stress also reduce the 
compressive strength, while under the small compressive 
transverse stress, the compressive strength is almost 
constant. In addition, the dependency of the multi-axial 
stresses changes with the change of the stress-strain curve 
of matrix. Fig. 5 (b) shows the analysis results for the 

relationship between compressive strength and the 
constituent material property. The matrix yield stress and 
fiber volume fraction increase the compressive strength 
and these relations are also close to the linear relation. 
The initial fiber misalignment reduces the compressive 
strength and this relation is close to the inversely 
proportional relation. The dependency of the material 
strength for each parameter almost agrees with  
the experimental results shown in the previous 
investigations [2–3]. 

CONCLUSION 

Mathematical model expressing longitudinal compressive 
failure is obtained. There exists a state where the 
arbitrariness appears in the solution of equations 
expressing the deformation of composite materials, and 
the condition for onset of the arbitrariness is closely 
related with the initiation of the longitudinal compressive 
failure in the material. 

 

Fig. 4: Stress-strain Curves of Matrix 

 

(a) Relationship with Multi-axial Stresses 
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(b) Relationship with Constituent Material Property 

Fig. 5: Numerical Results for Compressive Strength 
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